Charlotte Mills

Charlotte Mills

Position: Doctoral Candidate

Supervisors:

Mike Letnic

David Keith

Contact details:

Email: charlotte.mills@unsw.edu.au

Office: Room 456, D26 Building UNSW, Kensington 2052

Research Focus:

My PhD research investigates the role of declining native mammal species in shaping Australia's arid zone. I use foraging tray experiments and exclusion fences in areas with rewilded mammal populations to tease out their consumptive effects on the soil seedbank and vegetation communities.  

Publications

Author Date Title Link PDF
Mills and Letnic 2018 Reversing functional extinction of mammals prompts a rethink of paradigms about seed fate in arid Australia

Abstract:

Functional extinction of once abundant species has frequently preceded understanding of their ecological roles. Consequently, our understanding of ecosystems is prone to shifting baselines because it often relies on observations made on depauperate species assemblages. In Australian deserts, current paradigms are that ants are the dominant granivores, mammals are unimportant seed predators and that myrmecochory in many Australian shrubs is an adaptation to increase dispersal distance and direct seeds to favourable germination sites. Here, we ask whether these paradigms could be artefacts of mammal extinction. We take advantage of a predator-proof reserve within which locally extinct native mammals have been reintroduced to compare seed removal by ants and mammals. Using foraging trays that selectively excluded mammals and ants we show that a reintroduced mammal, the woylie (Bettongia penicillata) was at least as important as ants in the removal of seeds of two shrub species (Dodonaea viscosa and Acacia ligulata). Our results provide evidence that the dominance of ants as granivores and current understanding of the adaptive benefit of myrmecochory in arid Australia may be artefacts of the functional extinction of mammals. Our study shows how reversing functional extinction can provide the opportunity to rethink contemporary understanding of ecological processes.

Access the paper here: https://doi.org/10.1098/rsos.171977

View PDF
Lyons et al. 2018 Bird interactions with drones, from individuals to large colonies

Abstract

Drones are rapidly becoming a key part of the toolkit for a range of scientific disciplines, as well as a range of management and commercial applications. This presents challenges in the context of how drone use might impact on nearby wildlife, especially birds as they might share the airspace. This paper presents observations (from 97 flight hours) and offers preliminary guidance for drone-monitoring exercises and future research to develop guidelines for safe and effective monitoring with drones. Our study sites spanned a range of arid, semi-arid, dunefield, floodplain, wetland, woodland, forest, coastal heath and urban environments in south-eastern and central Australia. They included a nesting colony of >200 000 Straw-necked Ibis Threskiornis spinicollis, the largest drone-based bird-monitoring exercise to date. We particularly focused on behavioural changes towards drones during the breeding season, interactions with raptors, and effects on birds nesting in large colonies—three areas yet to be explored in published literature. Some aggressive behaviour was encountered from solitary breeding birds, but several large breeding bird colonies were surveyed without such issues. With multi-rotor drones, we observed no incidents that posed a threat to birds, but one raptor attacked and took down a fixed-wing drone. In addition to providing observations of interactions with specific bird species, we detail our procedures for flight planning, safe flying and avoidance of birds, and highlight the need for more research into bird– drone interactions, most notably with respect to territorial breeding birds, safety around large raptors, and the effects of drones on the behaviour of birds in large breeding colonies.

View PDF
Mills et al. 2018 Rewilded mammal assemblages reveal the missing ecological functions of granivores

Abstract:

1. Rewilding is a strategy for ecological restoration that uses reintroductions of animals to re‐establish the ecological functions of keystone species. Globally, rewilding efforts have focused primarily on reinstating the ecological functions of charismatic megafauna. In Australia, rewilding efforts have focused on restoring the ecological functions of herbivorous and omnivorous rodents and marsupials weighing between 30 and 5,000 g inside of predator‐proof exclosures.

2. In many arid ecosystems, mammals are considered the dominant seed predators. In Australian deserts, ants are considered to be the primary removers and predators of seeds and mammals unimportant removers and predators of seeds. However, most research on granivory in Australian deserts has occurred in areas where native mammals were functionally extinct.

3. Here, we compare rates of seed removal by mammals and ants on shrub seeds and abundance of shrub seedlings in two rewilded desert ecosystems (Arid Recovery Reserve and Scotia Wildlife Sanctuary) with adjacent areas possessing depauperate mammal faunas. We used foraging trays containing seeds of common native shrubs (Acacia ligulata and Dodonaea viscosa) to examine rates of seed removal by ants and mammals. We quantified the abundance of A. ligulata and D. viscosa seedlings inside and outside of rewilded areas along belt transects.

4. By excluding ants and mammals from foraging trays, we show that ants removed more seeds than mammals where mammal assemblages were depauperate, but mammals removed far more seeds than ants in rewilded areas. Shrub seedlings were more abundant in areas with depauperate mammal faunas than in rewilded areas.

5. Our study provides evidence that rewilding of desert mammal assemblages has restored the hitherto unappreciated ecological function of omnivorous rodents and bettongs as seed predators. We hypothesize that the loss of omnivorous mammals may be a factor that has facilitated shrub encroachment in arid Australia.

6. We contend that rewilding programs aimed at restoring ecological processes should not ignore consumers with relatively lower per capita consumptive effects. This is because consumers with low per capita consumptive effects often occur at high population densities or perform critical ecological functions and thus may have significant population level impacts that can be harnessed for ecological restoration.

View PDF
Mills et al. 2017 Rewilded mammal assemblages reveal the missing ecological functions of granivores

Rewilding is a strategy for ecological restoration that uses reintroductions of animals to re-establish the ecological functions of keystone species. Globally, rewilding efforts have focused primarily on reinstating the ecological functions of charismatic megafauna. In Australia, rewilding efforts have focused on restoring the ecological functions of herbivorous and omnivorous rodents and marsupials weighing between 30-5000g inside of predator-proof exclosures.
In many arid ecosystems, mammals are considered the dominant seed predators. In Australian deserts, ants are considered to be the primary removers and predators of seeds and mammals unimportant removers and predators of seeds. However, most research on granivory in Australian deserts has occurred in areas where native mammals were functionally extinct.
Here, we compare rates of seed removal by mammals and ants on shrub seeds and abundance of shrub seedlings in two rewilded desert ecosystems (Arid Recovery Reserve and Scotia Wildlife Sanctuary) with adjacent areas possessing depauperate mammal faunas. We used foraging trays containing seeds of common native shrubs (Acacia ligulata and Dodonaea viscosa) to examine rates of seed removal by ants and mammals. We quantified the abundance of A. ligulata and D. viscosa seedlings inside and outside of rewilded areas along belt transects.
By excluding ants and mammals from foraging trays, we show that ants removed more seeds than mammals where mammal assemblages were depauperate, but mammals removed far more seeds than ants in rewilded areas. Shrub seedlings were more abundant in areas with depauperate mammal faunas than in rewilded areas.
Our study provides evidence that rewilding of desert mammal assemblages has restored the hitherto unappreciated ecological function of omnivorous rodents and bettongs as seed predators. We hypothesize that the loss of omnivorous mammals may be a factor that has facilitated shrub encroachment in arid Australia.
We contend that rewilding programs aimed at restoring ecological processes should not ignore consumers with relatively lower per capita consumptive effects. This is because consumers with low per capita consumptive effects often occur at high population densities or perform critical ecological functions and thus may have significant population level impacts that can be harnessed for ecological restoration.

See the press release here: https://newsroom.unsw.edu.au/news/science-tech/re-introduction-native-ma...
Hear Mike Letnic discuss the paper on the radio: http://www.abc.net.au/radio/programs/pm/small-mammals-could-help-to-rest...

Access the paper here: http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12950/full

View PDF
Letnic et al. 2016 The crest-tailed mulgara (Dasycercus cristicauda) in the south-eastern Strzelecki Desert

Our survey trips always uncover something surprising. Recently we observed a range extension of the crest-tailed mulgara or ampurta, (Dasycercus cristicauda), which was very exciting! We discuss our observations in an article published in Australian Mammalogy. The article can be accessed here: http://www.publish.csiro.au/paper/AM15027.htm 

The abstract of this article is reproduced below.

We report observations of the crest-tailed mulgara (Dasycercus cristicauda) in the south-eastern Strzelecki Desert. Our observations, made during spotlight surveys and using infrared cameras, extend the contemporary range of D. cristicauda to the east by 180 km but subfossil records show that these observations are within the pre-European-settlement range of the species. Whether our observations represent a range expansion or localised population irruption of a previously unknown refuge population is not known. Future studies are recommended to establish the distribution of D. cristicauda in the region and the factors determining its distribution and abundance

Go to top